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Non-stationary oblique shock wave reflections for fluids in the dense gas regime
are examined for selected cases. A time-accurate predictor-corrector TVD scheme
with reflective boundary conditions for solving the Euler equations simulates the
evolution of a wave field for an inviscid van der Waals gas near the thermodynamic
critical point. The simulated cases involve shock tube flows with compressive wedges
and circular arcs. Non-classical phenomena, such as disintegrating shocks, expansion
shocks, composite waves, etc., demonstrate significant differences from perfect gas
flow fields over similar geometries. Detailed displays of wave field structures and
thermodynamic states for the dense gas flow fields are presented and analysed.

1. Introduction
Heavy polyatomic gases with large specific heats may exhibit non-classical fluid

dynamic phenomena near the thermodynamic critical point. There is increased in-
terest in these gases since their unusual properties could prove to be advantageous
in several engineering applications. For example, the application of dense gases in
nozzles and heavy-gas wind tunnels has been investigated by Aldo & Argrow (1995),
Anders (1993), Kluwick (1993), Schnerr & Leidner (1993a), and Anderson (1991).
Working fluids used in organic Rankine cycles (Curran 1981) may potentially ex-
hibit advantageous dense gas effects. A recent discussion of using dense gases in
turbomachinery can be found in Schnerr & Leidner (1993b).

In the following discussion, dense gas refers to a single-phase fluid whose heat
capacity is large enough to potentially exhibit non-classical phenomena in the ther-
modynamic state above the saturated vapour curve near the thermodynamic critical
point. The phrase dense gas regime refers to the aforementioned thermodynamic re-
gion and dense gas flow indicates all or part of a flow field with thermodynamic states
in the dense gas regime. Bethe (1942) and Zel’dovich (1946) were the first to suggest
the existence of dense gases by demonstrating thermodynamic regions of what is
referred to as negative non-linearity. Thompson (1971) was the first to recognize the
importance of the sign of a fluid parameter that governs the nonlinear dynamics of
gases called the fundamental derivative of gas dynamics,

Γ = −ν
2

(
∂2p/∂ν2

)
s(

∂p/∂ν
)
s

= 1 +
ρ

a

(
∂a

∂ρ

)
s

. (1.1)

Here, p is the pressure, ρ is the density, ν = 1/ρ is the specific volume, a is the
speed of sound, s is the entropy, and the overbar indicates dimensional quantities.
The fundamental derivative Γ describes the rate of change of the convected sound
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speed with density for a simple wave as indicated by the second formulation in
(1.1). In the perfect gas regime, Γ > 0 and the gas dynamics is said to exhibit
positive non-linearity. Negative nonlinearity occurs in the thermodynamic region
where Γ < 0 and the curvature of the isentropes is reversed near the saturation
curve in the vicinity of the critical point. Note that the term (∂2p/∂ν2) in (1.1) is
negative between the inflection points of the isentropes. This results in Γ < 0 since
the denominator (∂p/∂ν)s < 0 everywhere from the requirement of thermodynamic
stability. An example of an isentrope inflection and the corresponding Γ < 0 region
is evident in the p, ν diagram in figure 5(d). One result of the Γ < 0 condition is that
flow disturbances can only steepen backwards to form expansion shocks. This is in
contrast to classical flows where disturbances steepen forward to form compression
shocks. For fluids with relatively small specific heats, such as steam, a Γ < 0 region
does not exist above the saturation curve for the van der Waals model. Owing to
the contributions of the three investigators mentioned above, fluids with specific
heats large enough to exhibit a region of negative non-linearity above the saturation
curve are sometimes referred to as Bethe–Zel’dovich–Thompson (BZT) fluids (Cramer
1991a).

Using several gas models Lambrakis & Thompson (1972) and Thompson & Lam-
brakis (1973) analytically show specific examples of existing fluids such as fluorinated
ether E-4 (C14F29HO4) and perfluorodecalin (C10F18) where negative non-linearity
may be observed. Cramer (1989a) confirms these findings and extends the list of
negative-Γ fluids to several other commercially available fluorocarbons. Borisov et al.
(1983) experimentally observed what they believed to be expansion shocks in trifluo-
rochloromethane (CClF3, Freon-13), although this has since been questioned (Cramer
& Sen 1986). Thompson, Carofano & Kim (1986) also experimentally observed
non-classical flow phenomena including expansion shocks in multi-phase flows.

In Cramer & Best (1991) as well as Schnerr & Leidner (1991) are examples of
additional analytical investigation of the inviscid structure of dense gas flows. The
dissipative structure of weak shocks in the dense gas regime is also analytically
examined by Cramer & Kluwick (1984) and Cramer (1987). Numerical simulation of
the evolution of dense gas wave fields is performed by Thompson et al. (1986) for
multi-phase fluids and Argrow (1996) for single-phase one-dimensional shock tube
flow. The work presented in the present article is an extension of the latter research
to a two-dimensional shock tube with obstacles. Owing to the complexity of the state
equations for dense gases, wave interactions are expected to be less predictable than
the interactions in perfect gas flows.

There have been extensive investigations of shock wave reflections over the past
several decades for perfect gases, equilibrium gases, and non-equilibrium gases. A
comprehensive source list and an encompassing survey of research in this area can
be found in Ben-Dor (1992). Of particular relevance to our work are the findings
for moving shocks incident on compressive wedges. For perfect gases, the wave field
structures are found to be solely dependent on the Mach number of the incident
shock MI and the angle of the wedge θw for a given ratio of specific heats γ.
Figure 1(a), a reproduction of figure 2.41 from Ben-Dor (1992), is a θw , MI diagram
for frozen argon (note MI is labelled MS in this figure). The four types of reflections
observed experimentally generally agree with the analytically determined domains
and transition boundaries. Low incident wave Mach numbers (MI < 2) at low wedge
angles (θw < 50◦) usually result in a single Mach reflection (SMR) while high wedge
angles (θw > 50◦) result in a regular reflection (RR). These wave structures are
illustrated in figure 1(b) and figure 1(c), respectively. For higher incident wave Mach
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Figure 1. Shock reflections in argon. (a) A reproduction of figure 2.41 from Ben-Dor (1992):
domains and transition boundaries for various types of shock wave reflections in the (MI, θw) plane
for frozen argon; lines are the analytically determined transition lines and the symbols are the
experimental data. (b) A single Mach reflection (SMR); I, incident shock wave; R, reflected shock
wave; M, Mach stem; S, slipstream; T, triple point; θw , wedge angle; χ, triple-point trajectory angle.
(c) A regular reflection (RR).

numbers (MI > 2), a transitional Mach reflection (TMR) or a double Mach reflection
(DMR) will be observed. Incident shock wave speeds in the dense gas regime are
generally very low (MI 6 1.23 for the cases presented here). Thus, wave field structures
in the dense gas regime are more likely to be similar to a SMR or a RR.

Shock wave reflections in the dense gas regime can differ from those of a perfect
gas since the fundamental derivative Γ may be negative in some regions of the flow.
Thompson (1971) shows that for steady flows compression shocks disintegrate into
finite compression waves when Γ < 0. This is also true for compression shocks in
unsteady flows. Because the region of negative nonlinearity is restricted to a finite
range of temperatures and pressures, waves interacting with other waves or boundaries
may cause Γ to change sign. The result of the interaction could be non-classical wave
phenomena. Cramer (1989b) demonstrates conditions where a compression wave can
appear as a composite wave, e.g. a shock–fan combination, or even a split wave,
e.g. a shock–fan–shock combination. Argrow (1996) shows that waves reflected from
shock tube endwalls may become composite, split, or completely reversed in nature,
i.e. shocks reflecting as fans or vice versa, depending on the sign of Γ both upstream
and through the wave.

This paper provides the first detailed computational analysis of single-phase dense
gas wave fields for two-dimensional shock tube flow with obstacles. A predictor-
corrector TVD scheme (Causon 1988) based on the Davis–Roe flux-limited method
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(Davis 1987) is used to numerically integrate the time-dependent two-dimensional Eu-
ler equations for a van der Waals gas. The wave field simulations include compression
shocks incident on wedges of varying angles as well as circular arcs. Expansion shocks
incident on wedges are also simulated. The purpose of this paper is to demonstrate
through the simulation and analysis of the selected cases some of the non-classical
phenomena that will occur. A comprehensive analysis of all reflection types and
transition criteria for dense gas wave structures will be the focus of future research.

2. Governing equations
2.1. Gas model

The thermal equation of state is that of a van der Waals gas,

p =
ρRT

1− bρ
− αρ2, (2.1)

where p is the pressure, R is the gas constant, T is the temperature, and α and b are
the well-known van der Waals constants. The caloric state equation is written as

e = e0 + cvT − αρ, (2.2)

where e is the specific internal energy and e0 is a reference value. For simplicity, the
specific heat cv is assumed to be a constant evaluated in the perfect gas limit since
there is minimal temperature change in the flows investigated. The thermodynamic
variables are non-dimensionalized using the critical point values, designated with a c
subscript,

p =
p

pc
, ρ =

ρ

ρc
, T =

T

Tc

, u =
u

(RTc)1/2
, v =

v

(RTc)1/2
,

e =
e− ec
RT c

, s =
s− sc
R

, a =
a

(RTc)1/2
, x =

x

L
, y =

y

L
.

 (2.3)

The variables x and y are the non-dimensional streamwise and transverse spatial
coordinates, respectively, and L is the length of the computational domain. The
variables u and v are the velocity components in the streamwise and transverse
directions, respectively.

Equations (2.1) and (2.2) are written in reduced variable form by setting the
compressibility factor at the critical point, Zc = (p/ρRT )c = 3/8:

p =
8ρT

3− ρ − 3ρ2, (2.4)

e =
T

δ
− 9

8
ρ. (2.5)

Note that the free parameters α and b have been eliminated. This, of course, indicates
that all fluids satisfy the same state equation when reduced variables are used which
satisfies the principle of corresponding states (e.g. Emanuel 1987). The parameter
δ = R/cv is assumed to be constant. Air with a specific heat ratio of γ = 1.4 has a
value of δ = 0.4. For the dense gas cases a value of δ = 0.0125 is used, corresponding
to a fluid with large specific heat relative to the gas constant R. For example,
commercially available fluids such as perfluorodecane (C10F22) has δ = 0.0132 and
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fluorinated ether E-5 (C17F35HO5) has δ = 0.0074 (Thompson & Lambrakis 1973).
The non-dimensional form of other useful properties can also be derived:

a =

[
(1 + δ)T

(
3

3− ρ

)2

− 9

4
ρ

]1/2

, (2.6)

s = ln

[
1

2

(
3− ρ
ρ

)]
+

1

δ
lnT , (2.7)

Γ =
6

δar2

[(
1

3− ρ

)3

(2 + 3δ + δ2)T − ρ

4

]
. (2.8)

In equation (2.8) ar is the reduced speed of sound given by

ar
2 =

1

δ

[
4(1 + δ)T

(
1

3− ρ

)2

− ρ
]
. (2.9)

2.2. Euler equations

The two-dimensional Euler equations,

∂Q

∂t
+
∂E

∂x
+
∂F

∂y
= 0, (2.10)

govern the compressible inviscid flow, where the time t = (R̄T̄c)
1/2t̄/L̄. The con-

servative state vector Q and the Cartesian flux vectors E and F have been non-
dimensionalized using the relations in (2.3):

Q = [ρ, ρu, ρv, ρet]
T , (2.11)

E =
[
ρu, ρu2 + Zcp, ρvu, (ρet + Zcp)u

]T
, (2.12)

F =
[
ρv, ρuv, ρv2 + Zcp, (ρet + Zcp)v

]T
. (2.13)

Here, et is the specific total energy,

et = e+ 1
2

(
u2 + v2

)
. (2.14)

3. Numerical method
The physical space (x, y) is mapped onto the computational space (ξ, η) using

a generalized coordinate transformation where ξ = ξ(x, y) and η = η(x, y). The
equations of motion become

∂Q̂

∂t
+
∂Ê

∂ξ
+
∂F̂

∂η
= 0, (3.1)

where

Q̂ = Q/J, (3.2)

Ê =
[
ξxE + ξyF

]
/J, (3.3)

F̂ =
[
ηxE + ηyF

]
/J. (3.4)
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Here, J = ξxηy − ξyηx, is the metric Jacobian. The coordinate transformation used
to map the H-grid configuration of the shock tube domain into the rectilinear
computational domain is

ξ = x, η =

[
y − yl
1− yl

]ε
, (3.5)

where yl = yl(x) describes the shape of the lower boundary and ε determines the
degree of grid clustering at the lower boundary.

A conservative predictor-corrector TVD scheme (PCTVD) is used to solve the
non-linear hyperbolic system in (3.1). This pseudo-finite volume method, which is
second-order accurate in time and space, is well suited to computing the evolution
of shock tube wave fields. Dropping the carets ( ˆ ) from equations (3.1)–(3.4) for
convenience, the formulation of the finite difference equations is written as

Q∗i,j = Qn
i,j −

∆t

∆ξ

(
En
i,j − En

i−1,j

)
− ∆t

∆η

(
F n
i,j+1 − F n

i,j

)
, (3.6)

Qn+1
i,j =

1

2

[
Qn
i,j +Q∗i,j −

∆t

∆ξ

(
E∗i,j − E∗i−1,j

)
− ∆t

∆η

(
F ∗i,j+1 − F ∗i,j

)]
. (3.7)

The asterisk indicates quantities associated with the predictor stage, i and j refer to
the spatial discretizations in the ξ- and η-directions, respectively, and n refers to the
temporal discretization. The corrector in (3.7) can be brought into TVD form by
adding a non-linear term, Ω, that enforces the positivity nonlinear stability condition,
reducing significant overshoot at each grid point,

Qn+1′

i,j = Qn+1
i,j +Ωn

i,j , (3.8)

where

Ωn
i,j =

[
G+
i,j + G−i+1,j

]
∆Qn

i+1/2,j −
[
G+
i−1,j + G−i,j

]
∆Qn

i−1/2,j

+
[
H+

i,j +H−i,j+1

]
∆Qn

i,j+1/2 −
[
H+

i,j−1 +H−i,j
]

∆Qn
i,j−1/2, (3.9)

G± = 1
2
C (ζ)

[
1− φ(r±i,j)

]
, H± = 1

2
C (µ)

[
1− φ(w±i,j)

]
, (3.10)

C (z) =

{
z(1− z), z 6 1

2

1
4
, z > 1

2

, (3.11)

φ(z) =

{
min (2z, 1), z > 0
0, z < 0

, (3.12)

r± =

[
∆Qn

i− 1
2 ,j
, ∆Qn

i+ 1
2 ,j

]
[
∆Qn

i± 1
2 ,j
, ∆Qn

i± 1
2 ,j

] , w± =

[
∆Qn

i,j− 1
2
, ∆Qn

i,j+ 1
2

]
[
∆Qn

i,j± 1
2
, ∆Qn

i,j± 1
2

] , (3.13)

ζ = max |λξ |
∆t

∆ξ
, µ = max |λη|

∆t

∆η
. (3.14)

Here, [.,.] indicates an inner product, and λξ and λη are the eigenvalues in the ξ- and
η-directions, respectively. These characteristic values are written as

λξ = ξxu+ ξyv ± a(ξ2
x + ξ2

y)
1/2, λη = ηxu+ ηyv ± a(η2

x + η2
y)

1/2. (3.15)
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P1
D1
D2
D3

Case

0.4000
0.0125
0.0125
0.0125

d ρ
2

0.033
0.786
0.629
0.454

3.001
1.010
0.983
0.808

p
2

5.016
0.620

–0.135
0.353

u
2

1.2
–0.92
–0.053

0.36

Γ2 ρ
1

0.0156
0.275
0.879
0.275

1.000
0.575
1.090
0.575

p
1

1.2
0.70

–0.031
0.70

Γ
1

TABLE 1. Thermodynamic states for the jump conditions across the incident
shock wave (non-dimensional variables).

The above eigenvalues are also used to find the appropriate time step,

∆t = min

(
σ∆ξ

λξ
,
σ∆η

λη

)
, (3.16)

where σ is the CFL number.
Since the flow field involves waves moving and interacting in several different

directions four permutations of the predictor-corrector sequence are used to eliminate
directional bias. Reflective (solid wall) boundary conditions are implemented on
the upper, lower, and right-hand boundaries which includes enforcing the tangency
condition of the velocity components on the these boundaries in the physical domain.
Although cases where the incident shock reflects from the right-hand endwall are
computed with no difficulty, incident shocks are not allowed to reach this boundary
for the cases shown in this paper.

The shock tube initial conditions used to generate the shock jump conditions in
table 1 are from Argrow (1996). With the high-pressure state on the left-hand
side of the diaphragm and the low-pressure state on the right-hand side, bursting
the diaphragm produces a rightward-propagating compression shock followed by a
slower moving contact discontinuity. The resulting Rankine–Hugoniot jump condi-
tions across the shock are then used to restart the calculation. For all cases, the
discontinuity is started to the left of the obstacle as shown in figure 2. A complex
subsonic inflow boundary condition is avoided by not allowing interior disturbances
to reach the left-hand boundary. An expansion shock is similarly started from the
jump conditions with the high- and low-pressure states reversed such that the inci-
dent shock propagates to the right into the quiescent high-pressure gas. The induced
velocity of the gas upon expansion through the shock is to the left in the negative
x-direction so that the left-hand boundary in figure 2 becomes an outflow boundary.
Table 1 contains the moving incident shock jump conditions for the selected cases.

4. Results
4.1. Validation of the numerical scheme and gas model

Argrow & Cox (1993) compare results of the PCTVD scheme to the exact solution of
the one-dimensional Riemann problem using the perfect gas state equation. Argrow
(1996) shows that the numerical scheme with the van der Waals equation of state
approaches the perfect gas solution of the shock tube problem for initial conditions
in the dilute gas region.

For the present cases, computation begins with the single rightward-propagating
shock located to the left of the obstacle. For all cases, the computations are stopped
when the shock reaches x ≈ 0.9. All cases are run using 300× 300 cells with a CFL
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Figure 2. Schematic of shock tube domain and initial conditions. The left-hand boundary is set to
the post-shock conditions while the obstacle and remaining boundaries are solid.

number range of 0.4–0.7, with the exception of the case shown in figure 7 with the
wedge angle of θw = 60◦ which was run at a CFL number of 0.2.

To investigate the accuracy of the PCTVD simulations, results are compared to
the interferogram of Case 7 in Deschambault & Glass (1983) shown in figure 3(a).
The wave field in figure 3(a) is a SMR for argon resulting from a shock Mach
number MI = 3.20 incident on a compressive wedge of θw = 20◦. Figure 3(b) shows
the isopycnics of the PCTVD scheme starting from these initial conditions using the
perfect gas model. Unlike the diagram in figure 2 the incident shock in figure 3(b)
propagates to the left for a more convenient comparison with the experimental results.
The flow field is mapped by superimposing a grey scale with 20 contour lines. Darker
shades correspond to higher-density regions while lighter shades correspond to lower-
density regions. The contour lines map out densities whose values are equally spaced
increments between the highest- and lowest-density values in the flow field. The wave
field structure including the Mach stem, triple point, reflected shock, and slipstream
are resolved, simulating the experimental results. The density ratios in the labelled
regions of the flow field closely agree with the experimental results.

The perfect gas limit of the van der Waals model is validated by running the
PCTVD scheme with initial conditions far from the thermodynamic critical point,
case P1 in table 1. The resulting isopycnics for an incident Mach number MI = 1.65
and wedge angle of θw = 20◦ are shown in figure 4(a). As expected, the wave field
structure for this limiting case of the van der Waals model is that of a SMR, similar
to the results that use the perfect gas model shown in figure 3(b). Because the
incident shock is much weaker for the van der Waals case, the slipstream, though still
discernable, is not as obvious as the other structures present in the wave field.

The adequacy of the grid spacing is determined by observing the convergence of
the lower-boundary density profiles for the P1 case with increasing grid resolution
shown in figure 4(b). For each case, the computation is stopped at the same time
value. The 300×300 resolution is found to be adequate since the 150×150 resolution
results in density differences only of the order of 10−3.

4.2. Dense gas results

Initial conditions in the dense gas regime labelled D1–D3 in table 1 are analysed for
various obstacle geometries. For the D1 case, Γ > 0 ahead of the incident compression
shock and Γ < 0 behind it. Figure 5 shows the resulting flow field for a wedge having
an angle of θw = 20◦. The isopycnics of the flow in figure 5(a) are depicted in the
same manner as in figure 3(b). The incident shock is moving to the right at MI = 1.23.
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Figure 3. SMR for argon. (a) Deschambault & Glass’s (1983) experimental results for their case 7.
MI = 3.20, ρ2/ρ1 = 3.09, θw = 20◦. (b) Isopycnics PCTVD scheme with the perfect gas model using
the initial conditions of case 7.

With the same geometry and conditions using the perfect gas model, a SMR similar
to the schematic shown in figure 1(b) occurs. This also appears to be the case for
the dense gas shock wave. While the reflected shock and Mach stem are resolved, the
shock is too weak to clearly present a slipstream in the isopycnic plot. However, the
slipstream, though smeared, is evident in the entropy field shown in the enlarged inset
of the triple-point region in figure 5(a). Differences of the reflection shown in 5(a)
with a SMR for a perfect gas, like those in figures 3 and 4, include a triple-point that
is much closer to the wedge and a reflected shock that remains attached to the front
of the wedge. These differences give some indication that certain features such as the
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Figure 4. Wave field for the P1 case, θw = 20◦. (a) Isopycnics from the PCTVD scheme with the
van der Waals model for initial conditions in the perfect gas regime. (b) Density ρ profiles along
the lower surface for various grid resolutions.

triple point trajectory angle, χ, defined in figure 1(b), and the shock detachment angle,
i.e. the minimum angle for which the reflected wave will move upstream of the wedge,
will be different in a dense gas due to non-classical effects. This is not unexpected
since Law & Glass (1971) show that thermodynamic parameters contribute to the
triple-point trajectory angle. Also, Cramer (1991b) found shock detachment angles
for oblique shocks in steady flows of gases with large specific heats to be much higher
than those of dilute gases.

The density ρ, Mach number M, and fundamental derivative Γ profiles along
the lower surface are shown in figure 5(b). Note that M and Γ go through an
extremum in the Mach stem at x ≈ 0.9. Argrow (1996) gives a detailed discussion of
why this non-inviscid phenomenon occurs in Euler solutions. The extrema essentially
result from the smearing of the shock ‘discontinuity’ over a finite number of cells.
Because the entropy jump [s] across the shock is small ([s] 6 10−1 for all cases),
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Figure 5. Wave field for the D1 case, θw = 20◦. (a) Isopycnics and a magnified inset of the triple-point
region showing contours of entropy change, featuring the slipstream. (b) Density ρ, Mach number
M, and the fundamental derivative Γ profiles on the lower boundary. (c) Fundamental derivative,
Γ contours. (d) A p, ν diagram showing the thermodynamic states of the flow field regions along
with the coexistence curve, constant-Γ contours, and the isentrope of the initial state of the flow
field regions.

the isentropes closely approximate the shock adiabats. This is evident in the p, ν
diagram in figure 5(d) which shows the coexistence curve, constant-Γ contours, and
the isentrope of the initial state of the gas upstream of the incident shock, i.e. region
A. The thermodynamic conditions of regions B and C in figure 5(a) coincide closely
with the isentrope s = 0.98 of region A. Since the Γ < 0 region lies between regions
A and C, Γ has an extremum through the jump across the Mach stem. The Mach
number extremum seems to mimic the viscous structure of weak shocks studied by
Cramer (1987), which shows that the Mach number attains an extremum when the
local value of Γ changes sign. This is in contrast to the monotone variation of Mach
number through perfect gas shocks. Figure 5(c) shows the value of Γ in the flow field
mapped using a grey-scale as well as the contour lines for Γ = 0 and Γ = 1. Darker
shades correspond to regions with higher values of Γ .

Flow fields for the D1 case with relatively small and large wedge angles are
presented in figures 6 and 7. Isopycnics for the compression shock incident on a
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Figure 6. Wave field for the D1 case, θw = 5◦. (a) Isopycnics and a magnified inset of the triple-point
region showing contours of entropy change. (b) Density ρ, and the fundamental derivative Γ profiles
on the lower boundary. (c) Fundamental derivative Γ contours. (d) A p, ν diagram showing the
thermodynamic states of the flow field regions.

wedge of θw = 5◦ are shown in figure 6(a). Unlike figure 5, the wave field structure
is not that of an SMR. The reflected wave lying between regions B and C is a finite
compression wave rather than a shock. This is expected since Γ < 0 in both regions B
and C, evident in the Γ contour plot in figure 6(c) and the p, ν diagram in figure 6(d).
Although there is a small Γ > 0 region just behind the incident shock near the
wedge surface at x ≈ 0.87, there is no evidence from this calculation that the reflected
compression wave contains a shock in this region. The enlarged density field of this
region, which is inset in figure 6(a), shows the spreading density contours of a finite
compression wave. Also in figure 6(a), the inset of entropy contours in the region
gives no indication of a slipstream or a triple point such as is found in figure 5(a).
The form of the reflected wave between regions B and D is difficult to interpret.
The density contours in figure 6(a) appear to show a shock attached to the front of
the wedge that disintegrates into a fan between regions D and C. The location of
thermodynamic regions B and D in figure 6(d) suggests a fan–shock composite wave
as the flow moves through the wave from Γ < 0 in region B to Γ > 0 in region
D. However, further investigation found no resolvable entropy jump across the wave.
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Figure 7. As figure 6, but for θw = 60◦.

This may indicate that the weak reflected shock wave has degenerated completely
into a compression fan.

The wave field configuration for the case in figure 6 is somewhat similar to a
type of reflection found in perfect gases known as a von Neumann reflection (NR),
recently discovered from the numerical computations of Colella & Henderson (1990).
The reflected wave of a NR was found to be a self-similar band of finite compression
waves that converge into a shock away from the triple point. Similar to the case in
figure 6, the NR is found to occur for weak incident shocks and lower wedge angles.
Unlike the case in figure 6, the region of the NR in which the reflected wave has
finite thickness is very small, too small, in fact, to be resolved experimentally at the
time of the study. The compression fan portion of the reflected wave in figure 6 has
a much larger scale than the fan found in a NR. This difference is due to the fact
that the fan portion of the reflected wave in figure 6 occurs for different physical
reasons than that of the NR. The former arises from the thermodynamic condition of
Γ < 0 in the region of the reflected wave for which waves cannot exist as compression
shocks, whereas the fan in the NR arises from a fluid dynamic condition for which
the three-shock theory fails. Also, while a NR does not have a typical slipstream in
the form of a shear discontinuity, still present is a shear layer across which an entropy
change occurs. As mentioned earlier, no entropy change is evident in figure 6(a) in
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Figure 8. As figure 6, but for the D3 case, θw = 45◦.

this region. In the light of these two differences, the wave configuration in figure 6
does not appear to be a typical NR.

Isopycnics, ρ and Γ profiles along the lower boundary, Γ contours, and the p,
ν diagram for a wedge angle of θw = 60◦ for case D1 are shown in figure 7(a–d).
The reflected wave takes the form of a compression shock under which Γ maintains
a fairly constant positive value. This is evident in the p, ν diagram in figure 7(d)
where regions C and D, below the reflected wave in figure 7(a), are well above the
Γ < 0 region. Thus, for high wedge angles, the wave field structure for dense gas
shocks appears to be consistent with the RR depicted in figure 1(c). This is the typical
reflection configuration for shocks in perfect gases at high wedge angles such as is
shown in the θ, MI diagram for argon in figure 1(a).

Figure 8(a–d) shows the flow field starting from the D3 conditions given in table 1
for a wedge angle θw = 45◦. The incident compression shock is moving to the right
at MI = 1.18. For these conditions Γ > 0 both upstream and downstream of the
incident shock. The adiabat connecting these conditions, however, passes through the
thermodynamic region of Γ < 0. The plot of Γ in figure 8(c), as well as the p, ν
diagram in figure 8(d), shows that the gas in regions C and D, under the reflected
wave shown in figure 8(a), have been compressed into the Γ < 0 region. In the
one-dimensional case computed by Argrow (1996), the incident shock with the D3
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Figure 9. As figure 6, but the incipient expansion shock wave field for the D2 case, θw = 20◦.

conditions reflects from the endwall as a split shock. As explained by Cramer (1989b),
the shock-splitting phenomenon depends partly on the strength of the shock. For the
reflected wave seen in the isopycnics of figure 8(a), no split shock is evident since the
reflection is not strong enough to compress the gas back into the Γ > 0 region, i.e.
compressed to the extent that region C would lie in the Γ > 0 region. Although the
shock structure shown in the isopycnics of figure 8(a) basically resembles a RR, there
are differences. The reflected shock separating regions B and C splits into a shock
followed by a compression fan between regions B and D and a second compression
fan separating regions D and C. This is also evident in the density profile along the
lower boundary in figure 8(b) where the shock–fan is located at x ≈ 0.3 and the
second fan at x ≈ 0.65.

The flow field using D2 conditions for an expansion shock with MI = 1.05 incident
on a wedge of θw = 20◦ is shown in figure 9(a–d). Here the high-pressure gas is located
to the right, upstream of the shock, and the post-shock condition is the low-pressure
gas as indicated for this case in table 1. Thus, as the shock propagates to the right,
the flow travels to the left after expanding through the shock. Isopycnics of the wave
field are shown in figure 9(a). The flow immediately behind the incident shock, near
the wedge in region C, is expanded to a lower density than the flow behind the
incident shock far above the wedge in region B. This left-moving, over-expanded flow
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is then partially recompressed through what appears to be a weak compression shock
extending from the wedge surface near x = 0.8. This shock becomes continuously
weaker farther above the wedge. The flow is then more gradually compressed as it
propagates to the left into region D, as is evident in the density profile on the lower
surface shown in figure 9(b). As seen in the Γ plot in figure 9(c) and the p, ν diagram
in figure 9(d), the fundamental derivative Γ > 0 in regions C and D to the left of the
incident shock, including the region of the compression shock as expected.

A compression shock propagating over a circular arc whose maximum thickness
is 12.5% of the total distance between the upper and lower boundaries is shown in
figures 10 and 11. The wave field for the P1 conditions with MI = 1.65 is shown in
figure 10(a,b). The wave field structure of the isopycnics shown in figure 10(a) has
features similar to both those of Yee (1989), who used a similar numerical scheme for
a perfect gas shock over a rounded wedge, and Yang, Lombard & Bershader (1987).
The Mach stem has the form of a curved diffracted shock travelling slightly ahead
of the incident shock. The triple point, reflected shock, and low-density region on
the right-hand side of the arc are also well resolved. In addition, the formation of a



Two-dimensional dense gas flows 111

1.0

C

(c)

y

0.8

0.6

0.4

0.2

0

(a)
S

(b) (d )

s=0.98

Coexistence
curve

q

C

D

5

4

3

2

1

0

–1

1.2

1.0

0.8

0.6

p

Region

A
B
C
D
E

ρ/òA

1.0
2.9
2.3
1.8
4.8

Region

A
B
C
D
E

¡

 0.7
–0.9
–0.2
 1.2
  4.5

D

A

B

C

A

E

B

C

D

0 0.2 0.4 0.6 0.8 1.0
x

1 2 3 4
m

C = 0.5
0.0

–0.5
B

E

E

A
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secondary compression shock at the right-hand terminus of the arc is fairly evident
in figure 10(a) and clearly apparent in the density profile for the lower boundary in
figure 10(b).

The flow field for a compression shock propagating over a circular arc identical to
that of figure 10 using the D1 conditions with MI = 1.23 is presented in figure 11(a–d).
The isopycnics in figure 11(a) show that the dense gas flow field lacks a clearly resolved
triple point and that the Mach stem does not travel noticeably ahead of the incident
shock. The reflected compression shock between regions B and E disintegrates into
a compression fan behind the incident shock between regions B and C. Another
interesting feature is the formation of an expansion shock above the arc between
regions E and C. Note from figure 11(b) that on the arc surface this expansion
wave is present in the form of a fan and coalesces into a shock above the arc in
the Γ < 0 region. Cramer (1991a) illustrates a similar phenomenon of an expansion
shock forming above a single airfoil in a steady flow. Both phenomena are consistent
with the theory of Thompson (1971) for expansion shock formation where Mach lines
predictably converge with decreasing pressure where Γ < 0. Figure 11(c) shows the
Γ contours for the wave field, and figure 11(d) shows the thermodynamic conditions
of the labelled regions. Also interesting to note in figure 11(a) is the compression
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shock around the right-hand terminus of the arc. Here, the gas is recompressed into
the Γ < 0 region evident in the Γ profile for the lower boundary in figure 11(b).

5. Discussion
As anticipated, the wave structures for shock reflections in the dense gas regime

are found to be significantly different than those of perfect gas flows over similar
geometries. For example, unlike shocks in the perfect gas regime, compression shocks
incident on a wedge whose post-shock condition lies in a region of Γ < 0 apparently
cannot form a typical SMR at very low wedge angles such as the θw = 5◦ case shown
in figure 6. The moderate wedge angle (θw = 20◦) for the case shown in figure 5 results
in a SMR, and the high wedge angle (θw = 60◦) in figure 7 results in an RR. However,
features such as triple-point trajectory angles and detachment angles are expected to
differ from those of perfect gases due to the thermodynamic properties in the dense
gas regime. The structure of many dense gas wave fields are non-intuitive from a
classical gas dynamics point of view, e.g. the partial disintegration of the reflected
shock into a fan for the D3 case in figure 8 and the weak compression shock behind
the expansion shock for the D2 case in figure 9. This is because the fundamental
derivative Γ is sensitive to wave and boundary interactions in the thermodynamic
region near the critical point. Wave structures are consistent with the inviscid theory
with regard to the sign of the fundamental derivative, i.e. compression shocks spread
into fans in regions of Γ < 0, etc. Dense gas flows involving more complex geometries
such as the circular arc also show a wealth of non-classical phenomena. For the D1
case shown in figure 11(a), the existence of a triple point is not apparent and an
expansion shock forms above the arc.

Thus far there has been no attempt to analytically treat shock reflections in the
dense gas regime. Although analytical investigation is not the focus of this paper, a
brief discussion on the challenges of such an investigation is warranted. Analytical
approaches for the RR and SMR configurations are developed by von Neumann
(1943) through the ‘two-shock theory’ and ‘three-shock theory’, respectively. Two
difficulties arise when trying to approach a solution with these theories using a gas
model that accounts for real gas effects, such as the van der Waals model: (i) the
complexity of the state equations, and (ii) the validity of the physical models behind
these theories for dense gas flows. Regarding (i), the two-shock theory for a RR
consists of nine equations and 13 parameters for a gas assumed to be thermally
perfect and in thermodynamic equilibrium. Using the perfect gas state equation
reduces the problem to a single sixth-order polynomial for which four roots can be
discarded leaving the weak and strong shock solutions (Henderson 1982). Referring
to (2.1) and (2.2), the van der Waals model is more complex since the gas is thermally
imperfect as well as calorically imperfect, i.e. e = e(ρ, T ). The simplifications of shock
reflections in perfect gases are clearly lost when modelling dense gases using even the
simplest non-ideal gas model. For example, as mentioned in §1, reflection categories
for perfect gases with a constant γ = cp/cv are found to be a function of θw and MI

only. For perfect gases the speed of the incident shock is a function of γ and the
pressure ratio across the shock, i.e. MI = MI (γ, p2/p1). For dense gases, however, the
actual values of the pressures across the shock become important in determining the
proximity of the thermodynamic states to the Γ < 0 region.

Regarding (ii), the three-shock theory will break down for weak incident waves,
which indicates that the physical model for weak reflections is incorrect (Colella &
Henderson 1990). As stated previously, shock waves in the dense gas regime are
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generally weak (MI 6 1.23 for the cases presented here). In addition, reflections in
the dense gas regime can potentially consist of composite waves, e.g. a shock–fan
combination, which are not readily treatable through analytical approaches of the
two-shock and three-shock theories.

The objective of the present paper is to present results of recent numerical exper-
iments that predict non-classical phenomena for flows of dense gases. Noted earlier
is that very little experimental data are available for dense gas flows that display
the phenomena of interest in the present paper. The existing data are either not
applicable to the present cases (e.g. the two-phase results of Thompson et al. 1986),
or the original interpretation of the results is questionable (Borisov et al. 1983). The
simulations of the present paper predict what we expect to see experimentally. As
noted, the only pertinent experimental data presently available are for a perfect gas.
PCTVD results with the perfect gas model accurately reproduce the experimental
data of Deschambault & Glass (1983) as shown earlier.

In spite of the lack of experimental evidence at this time, advanced computational
methods provide powerful tools for the design and analysis of complex physical
systems such as dense gas flows. Although simulations cannot replace carefully
planned experiments, they complement experiments in a number of ways. In the
past numerical results were often compared to existing experimental databases for
validation and to build confidence in their ability to simulate physical systems.
The maturation of computational fluid dynamics (CFD) over the past 30 years is
exemplified by the ability of state-of-the-art shock capturing methods, such as the
PCTVD scheme in the present paper, to accurately model Euler flows over simple
geometries.

At present, simulations often precede experimental evidence of phenomena. For
instance, it is commonplace in particle physics for the existence of subatomic particles
to be predicted before experimental verification. In fact, the numerical predictions
allow experimenters to focus their attention on certain predicted phenomena to verify
a particle’s existence. Our approach is similar in that the calculations presented here
provide guidance for experiments. Owing to the small, finite range of thermodynamic
conditions in which dense gas phenomena can be observed, experiments are difficult
to design and perform. Numerical simulations, such as shown in this paper, will
simplify the task. Another important application of CFD is the ‘virtual measurement’
of variable and parameter combinations that are very difficult or even impossible to
obtain experimentally, thus providing insight into physical processes that may exceed
what can be accomplished with current experimental techniques.

6. Summary and conclusions
Two-dimensional unsteady wave fields for an inviscid van der Waals gas near

the thermodynamic critical point are examined for selected cases. To the authors’
knowledge, this is the first numerical analysis of physically realistic time-accurate
unsteady single-phase flow of dense gases over obstacles. Significant differences in
wave field structures between dense gases and perfect gases are clearly demonstrated.
Certain non-classical phenomena observed in these cases, such as the total or partial
disintegration of compression shocks, may prove to be useful in certain engineering
applications, e.g. flow through a turbine cascade. The van der Waals equation of state
and constant-cv assumption are used more for simplicity than accuracy. An equation
of state which is more accurate near the thermodynamic critical point will improve the
numerical simulations at the expense of algorithm complexity and computation time.
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A thorough study of wave reflections in the dense gas regime is of great importance
if the technological potential of dense gases in the engineering sciences is to be
completely realized. Therefore, future work will include more sophisticated numerical
schemes and gas models to simulate flows over a wider range of geometries for both
steady and unsteady cases. In addition, there is a need for experiments to provide
more data for validation of the simulations, e.g. shock tube experiments for working
fluids commonly used in organic Rankine cycles.

The authors acknowledge the National Science Foundation for support of this
work through the grant CTS-9614207.
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